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This paper presents a step towards the design of robust non-fragile power system stabilizers (PSSs) for
single-machine infinite-bus systems. To ensure resiliency of a robust PSS, the proposed approach pre-
sents a characterization of all stabilizers that can guarantee robust stability (RS) over wide range of oper-
ating conditions. A three-term controller (x1 + x2s)/(1 + x3s) is considered to accomplish the design.
Necessary and sufficient stability constraints for existing of such controller at certain operating point
are derived via Routh–Hurwitz criterion. Continuous variation in the operating point is tackled by an
interval plant model where RS problem is reduced to simultaneous stabilization of finite number of
plants according to Kharitonov theorem. Controller triplets that can robustly stabilize vertex plants are
characterized in a similar manner. The most resilient controller is computed at the center of maxi-
mum-area inscribed rectangle. Simulation results confirm robustness and resiliency of the proposed
stabilizer.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Power system stabilizers (PSSs) are often used to provide sup-
plementary feedback stabilizing signals through the excitation sys-
tems. Therefore, the stability limit of power systems can be
extended by PSSs which can enhance system damping at low fre-
quency oscillations associated with electromechanical modes
[1,2]. The conventional PSS commonly used in practice is a
dynamic output feedback, a lead controller type, with a single or
double stage and uses the speed deviation Dx as a feedback signal
[3]. Conventional fixed-parameter PSS may fail to maintain system
stability over wide range of operating conditions or at least leads to
a degraded performance once the deviation from the nominal point
becomes significant. Consequently, design of robust PSSs becomes
a priority to cope with uncertainties imposed by continuous varia-
tion in operating points. Synthesis of robust PSSs has been one of
the most celebrated research areas in power system control. Over
the past three decades or so, several methods have been developed
that enable a PSS to cope with parametric uncertainties in the plant
dynamics [4–11]. This is true for both types of uncertainties: struc-
tured and unstructured. A common divisor of these methods is that
they rely on the celebrated YJBK parameterization [12] of all stabi-
lizing controllers for a fixed linear time-invariant plant, which pro-
vides a free parameter over which an appropriate function of a
closed-loop transfer function may be minimized. Elegant tech-
niques for minimizing H1, H2 and L1 norms of different closed loop
transfer functions have been developed using this parameteriza-
tion [4,5]. Moreover, efficient numerical approaches have been
subsequently developed [10,11]. Although these methods cope
with uncertainty in the plant dynamics, they all assume that the
derived parameters of a PSS are precise and exactly implemented.
In practice it turns out, however that these gains cannot be imple-
mented exactly (due to resistors’ tolerance used with operational
amplifiers implemented for continuous-time PSS) leading to fragil-
ity problem [13,14]. This raises an important issue that is a robust
PSS can be very sensitive, or fragile, with respect to errors or per-
turbations in the controller coefficients and thus system instability
may occur. In turn, that brings about a fundamental problem in
robust control system design, which has been recently termed
the fragility problem, and hence the design of non-fragile control-
ler opens up as an important research topic that deserves further
investigations. Continuous-time PSS implementation uses opera-
tional amplifiers with resistors having tolerances in the range of
±5% to ±20%. For discrete-time PSS implementation, imprecision
is also expected in analog–digital and digital–analog conversion
circuits. Consequently, PSS design has to be able to tolerate some
uncertainty in the controller parameters as well as the plant
dynamics. Fragility problem of a robust PSS in power system liter-
ature is a new topic except for [15]. Static output feedback design
that permits for controller perturbation is suggested in [15] where
speed deviation (Dx) and rotor angle deviation (Dd) are used for

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2014.07.054&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2014.07.054
mailto:msoliman_28@yahoo.com
http://dx.doi.org/10.1016/j.ijepes.2014.07.054
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


Fig. 1. Block diagram of the linearized model [1].
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static feedback and two feedback gains have been computed. The
feedback gain of Dx can allow for a perturbation of +7.2% of its
nominal values while that (Dd) has to be implemented exactly.

In this paper, the design of a robust and non-fragile PSS is pre-
sented to cope with uncertainties in power system dynamics and
tolerate the perturbations in the PSS itself. To realize a robust first
order PSS, necessary and sufficient stability conditions are derived
using Routh–Hurwitz (RH) criterion. The stability boundaries
derived by RH criterion are then plotted in the controller parame-
ter-plane (x1 � x2) with fixed x3 where the stability region is exam-
ined. Thereafter, the PSS pole time constant is allowed to vary over
the typical range considered in PSS industry. The intersection of
stability regions at different operating points with x3 ¼ ½x�3 xþ3 �
can help characterize all stabilizing controllers, if it exists. Eight
Kharitonov vertex plants are computed for an interval plant model
considered to capture all uncertainties in operating point. Thus, the
aforementioned approach can be applied only eight times where
intersection of stability regions can easily be examined. Such
graphical representation of the controller solution set can help
select a point in the set such that its minimum distance to the
region boundary is maximized, i.e. the center of the maximum-
area inscribed rectangular.

The paper is organized as follows. Section ‘Problem statement’
describes the uncertainties of a simple power system. In Section
‘Robust versus non-fragile: overview’, an overview of robust and
non-fragile control is presented. Necessary and sufficient con-
straints for characterizing all robust stabilizing PSSs are derived
in Section ‘Robust PSS design’. Selection of the most resilient PSS
is reported in Section ‘Non-fragility analysis’. Simulation results
are considered in Section ‘Simulation results’. Finally, Section ‘Con-
clusion’ concludes the paper.
Problem statement

The test system comprises a single-machine connected to an
infinite-system through a tie lie line. Such infinite system may rep-
resent The venin’s equivalent of a large interconnected power sys-
tem. System dynamics are represented by four non-linear
Fig. 2. Uncertain plant with
differential equations as given in [8]. Nonlinear model and data
of the system are given in the Appendix A where the symbols are
standard and have their usual meaning as given in [1]. The block
diagram for linearized model of such system as proposed by deM-
ello and Concordia [1] is shown in Fig. 1. The model parameters
(k1, . . ., k6) are load-dependent and have to be computed at each
operating point given by active and reactive powers P, Q.

These parameters can be expressed as explicit functions in P
and Q as derived in [8]. Open loop transfer function (TF) is in turn
load-dependent and hence it is more convenient to accomplish the
design. At any operating point, such TF has a general form given by:
GpðsÞ ¼
Dx
DU
¼ �b1s

a4s4 þ a3s3 þ a2s2 þ a1sþ a0
ð1Þ

The coefficients a0, a1, a2 and b1 vary according to a vector q
which consists of two independent quantities P and Q, i.e.,
q ¼ ½P Q � while a3 and a4 are always constant and independent
of machine loading. Simply, any change in P, Q leads to correspond-
ing changes in a0, a1, a2 and b1. Therefore, if P and Q vary over their
prescribed intervals, i.e. P 2 ½P� Pþ� and Q 2 ½Q� Qþ�, Eq. (1)
describes a family of plants rather than a nominal plant. Since
a0, a1, a2 and b1 depend simultaneously on q, this family of plants
can be approximated by an interval plant where:
a4 ¼ ½a4 �a4�; a3 ¼ ½a3 �a3�; a2 ¼ ½a2 �a2�; a1 ¼ ½a1 �a1�;
a0 ¼ ½a0 �a0�; b1 ¼ ½b1

�b1� ð2Þ
where
½ai �ai� ¼ ½ min
P2½P P�;

Q2½Q Q �ai

ai= max
P2½P P�;

Q2½Q Q �ai

ai�; i ¼ 0;1; . . . ;4

Robust stability of this interval plant implies that of the family
of plants. However, instability of such interval plant does not imply
instability of such family of plants. Stability of interval plants is
often studied via Kharitonov theorem [12,16].
perturbed controller.



Fig. 3. Test system with a stabilizing three-term PSS.
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Fig. 4. Stability boundaries of test point at P = 0.9, Q = 0.2 and x3 = 0.085.
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Robust versus non-fragile: overview

Robust control problem

The robust design problem is often stated as ‘‘given a linear
plant Gp with additive uncertainties DGp, it is required to find a
controller K which internally stabilizes the family of plants Gp + -
DGp and satisfies a given performance measure [14]’’. There are dif-
ferent algorithms that provide an answer to this problem [12–15].
Frequently, the focus is on structured uncertainties in the plant to
represent the effect of general time-varying parameters whose
exact values are unknown but which are known to belong to a
given set. In general, the available algorithms do not incorporate
the problems associated with the implementation of uncertain
controllers.

Non-fragile control problem

Fragility problem discloses the issue of accuracy of controller
implementation to the extent that it brings about a trade-off
between implementation accuracy and performance deterioration.
It is therefore crucial to address and understand all the effects of
controller uncertainties in the implementation of robust control-
lers, which optimize a prescribed performance measure in linear
dynamical systems. It is quite reasonable for various practical pur-
poses to restrict attention to structured uncertainties in the con-
trollers. Therefore, a more realistic robustness problem would be
the one incorporating both plant uncertainties and PSS uncertain-
ties as illustrated in Fig. 2.

It has been suggested in [13,14] to overcome the fragility prob-
lem to develop synthesis methods which incorporates some struc-
tured uncertainties in the controller and then search for the ’’best’’
solution guaranteeing a compromise between optimality and fra-
gility; or employ a useful parameterization of the controller.
Robust PSS design

Necessary and sufficient stability constraints

Consider the feedback control system shown in Fig. 3; it has a
characteristic polynomial given by:

ðx3sþ 1ÞDðsÞ þ ðx2sþ x1ÞNðsÞ ¼ 0 ð3Þ

where D(s) = (a4s4 + a3s3 + a2s2 + a1s + a0), N(s) = b1s.
Putting c5 = x3a4/b1, c4 = (a4 + x3a3)/b1, c3 = (a3 + x3a3)/b1,

c2 = (a2 + x3a2)/b1, c1 = (a1 + x3a0)/b1, and c0 = a0/b1, (4) can be
rewritten as follows:

c5s5 þ c4s4 þ c3s3 þ ðc2 þ x2Þs2 þ ðc1 þ x1Þsþ c0 ¼ 0 ð4Þ
Now, the celebrated Routh–Hurwitz criterion is utilized to
derive the set of necessary and sufficient stability constraints as
follows:

where

R31 ¼ c3c4 � ðc2 þ x2Þc5;

R21 ¼ c3c4ðc2 þ x2Þ � c5ðc2 þ x2Þ2 � c2
4ðc1 þ x1Þ þ c0c4c5

R11 ¼ fc3c4ðc2 þ x2Þ � c5ðc2 þ x2Þ2 � c2
4ðc1 þ x1Þ þ c0c4c5g � fc4ðc1

þ x1Þ � c0c5g � c0ðc3c4 � c5ðc2 þ x2ÞÞ2

R01 ¼ c0ðc3c4 � c5ðc2 þ x2ÞÞ

Stability constraints are simply written as follows: Ri1 > 0,
i = 0, 1, 2, 3 where stability boundaries are given by zero-equalities,
i.e. Ri1 = 0, i = 0, 1, 2, 3. The positivity of R31 is ensured
iff x2 < (c3c4 � c2c5)/c5 which in turn makes R01 > 0 feasible. A test
point at P = 0.9 pu, Q = 0.2 pu and x3 = 0.85 s is considered to illus-
trate the stability boundaries as shown in Fig. 4. Testing a few
points in the controller parameter-plane, as shown in Fig. 4, can
help identify the stability region where ‘‘NS’’ stands for ‘‘Unstable’’
and ‘‘S’’ stands for ‘‘Stable’’. It can be noticed that stability region is
completely bounded by the constraint R11 = 0 (solid line) which is a
subset of that bounded by R21 = 0 (dashed-line). A typical range of a
PSS pole time-constant is frequently given by x3 ¼ ½0:02 0:15� as
explained in [2]. Typically, PSS design is often carried out at some
values in this interval [8,10,11].

Hint: Matlab function ‘‘ezplot’’ can help plotting stability con-
straints. The syntax ‘‘ezplot (f, [xmin, xmax, ymin, ymax])’’ plots
f(x, y) = 0 over xmin < x < xmax and ymin < y < ymax.

The stability region can explicitly be determined by the follow-
ing simple mathematical manipulations. The condition R11 = 0 can
be formulated as follows:

ax2
2 þ kx2 þ c ¼ 0
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Fig. 5. Stability region of a test point at P = 0.9, Q = 0.2 and x3 = 0.085.
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where a = a0 + a1x1, a0 = �c1c4c5, a1 = �c4c5

k ¼ k0 þ k1x1; k0 ¼ c1c3c2
4 � 2c1c2c4c5 þ c0c3c4c5; k1

¼ c3c2
4 � 2c2c4c5

c ¼ c0 þ c1x1 þ c2x2
1; c0 ¼ c0c2c3c4c5 � c1c2

2c4c5 þ c1c2c3c2
4

þ 2c0c1c2
4c5 � c2

0c4c2
5 � c0c2

3c2
4 � c2

1c3
4

c1 ¼ c2c3c2
4 � c2

2c4c5 � 2c1c3
4 þ 2c0c2

4c5; c2 ¼ �c3
4

Quadratic equation characterizer results in a 3rd order equation
in x1 as follows:

k2 � 4ac ¼ /3x3
1 þ /2x2

1 þ /1x1 þ /0;/3 ¼ �4a1c2;/2 ¼ k2
1 � 4ða0c2 þ a1c1Þ;

/1 ¼ 2k0k1 � 4ðc0a1 � c1a0Þ;/0 ¼ k2
0 � 4a0c0

The roots of such equation determine the extreme points of x1

that realize real and equal roots of x2. The stability region shown
in Fig. 4 is explicitly illustrated in Fig. 5. The effect of variation of
the controller-pole time constant on the stability region is shown
in Fig. 6 using a step size of 0.01. The coefficients of the open loop
transfer function are continuous over the ranges of P and Q such
that each point has a steadily load flow solution. As a result, these
ranges are mapped into controller parameters-plane of x1 � x2 at
fixed x3. Two approaches are proposed to study the effect of varia-
tion of P and Q on the resultant stability region while x3 belongs to
x3 ¼ ½x�3 xþ3 �. The first approach utilizes image-set polynomials while
the second utilizes Kharitonov polynomials. The number of polyno-
mials in the first approach depends mainly on the step size
selected to scan the intervals of P and Q, while the second approach
utilizes only eight polynomials according to Kharitonov theorem.
Image-set polynomials

The stability regions of different plants in the operating range of
P and Q can be plotted using an appropriate step size. The choice of
the step size is arbitrary and it is chosen to produce clearly defined
stability boundaries. Further, the controller-pole time constant
is allowed to vary over its interval. Now the following
ranges P ¼ ½0:2 1:0�, Q ¼ ½�0:2 0:5� and x3 ¼ ½0:02 0:15� are
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Fig. 11. Uncertain system with Perturbed PSS.
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considered. A step size of 0.05 is considered for P, Q, and 0.01 for x3.
The stability regions of these ranges are illustrated in Fig. 7. The
intersection of these regions characterizes the set of all stabilizing
controllers that guarantee robust stability over these ranges.

Remark 1. Using image-set polynomials results in accurate sta-
bility region in the controller-parameter plane, however it require
plotting the stability boundaries of 3570 plants that cover the full
ranges of P, Q and x3 with the specified step size, i.e. increasing
computational effort.
Remark 2. Although a digital PSS is quite precise, still it has uncer-
tainties such as finite word length, imprecision in analogue to dig-
ital and digital to analogue conversion circuits, finite resolution
measurements and round-off errors in numerical computations.
Hence, discrete time PSS may be fragile if these uncertainties are
not considered.

A typical PSS model has three basic blocks: the gain, the wash-
out filter, and the phase-lead compensator, as given below:

GpssðsÞ ¼ K
TW s

1þ TW s
1þ T1s
1þ T2s

¼ GWðsÞ
K þ KT1s
1þ T2s

¼ GW ðsÞ
x1 þ x2s
1þ x3s

� �

The purpose of the washout filter is to ensure that there is no
steady state error of voltage reference due speed deviation [2].
The PSS should be activated only when low frequency oscillations
develop, and should be automatically terminated when these oscil-
lations ceases. It should not interfere with the regular function of
the excitation system during steady state operation of the system
frequency. Since the washout filter should not have any effect on
the phase shift or gain at the oscillating frequency, it can be
achieved by choosing a large value of TW so that sTW is much larger
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than unity and hence GW(jxn) � 1, where xn is the oscillating fre-
quency. Further, its phase contribution is close to zero. The PSS will
not have effect on the steady state of the system since, in steady
state, Dx = 0. The impact of including the washout filter in the
design approach is shown in Fig. 8 considering different values of
TW. Remarkably, its effect on the stability region is not significant.

Kharitonov polynomials

Based on the interval plant model (3), only eight vertex plants
have to be considered to guarantee robustness under load uncer-
tainties. Necessary and sufficient conditions for robust stability of
interval plants according to Kharitonov theorem can be found in
[12].

Definition 1. Consider the set f of all real polynomials of degree n
of the from p(s) = a0 + a1s + a2s2 + . . . + ansn, where the coefficients
vary over independent intervals i.e. a0 ¼ ½a0 �a0�; a1 ¼ ½a1 �a1�; . . . ;

an ¼ ½an �an�. Such a set of polynomials is called an interval
polynomial.
perturbed controller gains (�30%).

2
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8
x 10
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pu
Exact PSS without washout
Exact PSS with washout, T

W
=10s
Theorem 1. [12] Every polynomial in the interval family f is Hurwitz-
stable iff the following Kharitonov polynomials are Hurwitz-stable:

K1ðsÞ ¼ a0 þ a1sþ �a2s2 þ �a3s3 þ a4s4 þ a5s5 þ �a6s6 þ . . .

K2ðsÞ ¼ a0 þ �a1sþ �a2s2 þ a3s3 þ a4s4 þ �a5s5 þ �a6s6 þ . . .

K3ðsÞ ¼ �a0 þ a1sþ a2s2 þ �a3s3 þ �a4s4 þ a5s5 þ a6s6 þ . . .

K4ðsÞ ¼ �a0 þ �a1sþ a2s2 þ a3s3 þ �a4s4 þ �a5s5 þ a6s6 þ . . .
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Fig. 16. Speed deviation response for 0.1 pu increment in Tm with and without
washout filter.
Proof. See [12]. h

Applying this theorem to system (1) whose parameters are
given by (3), the controller has to simultaneously stabilize the fol-
lowing vertex plants:

ðx3sþ 1ÞDiðsÞ þ ðx2sþ x1ÞNjðsÞ ¼ 0; i ¼ 1;2;3;4; j ¼ 1;2

Eight vertex polynomials are termed as Di, i = 1, 2, . . ., 8 and
given as follows:

D1 ¼ ðx3sþ 1Þða4s4 þ �a3s3 þ �a2s2 þ a1sþ a0Þ þ ðx2sþ x1Þðb1sÞ

D2 ¼ ðx3sþ 1Þða4s4 þ a3s3 þ �a2s2 þ �a1sþ a0Þ þ ðx2sþ x1Þðb1sÞ
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D3 ¼ ðx3sþ 1Þð�a4s4 þ �a3s3 þ a2s2 þ a1sþ �a0Þ þ ðx2sþ x1Þðb1sÞ

D4 ¼ ðx3sþ 1Þð�a4s4 þ a3s3 þ a2s2 þ �a1sþ �a0Þ þ ðx2sþ x1Þðb1sÞ

D5 ¼ ðx3sþ 1Þða4s4 þ �a3s3 þ �a2s2 þ a1sþ a0Þ þ ðx2sþ x1Þð�b1sÞ

D6 ¼ ðx3sþ 1Þða4s4 þ a3s3 þ �a2s2 þ �a1sþ a0Þ þ ðx2sþ x1Þð�b1sÞ

D7 ¼ ðx3sþ 1Þð�a4s4 þ �a3s3 þ a2s2 þ a1sþ �a0Þ þ ðx2sþ x1Þð�b1sÞ

D8 ¼ ðx3sþ 1Þð�a4s4 þ a3s3 þ a2s2 þ �a1sþ �a0Þ þ ðx2sþ x1Þð�b1sÞ

The bounds of each coefficient are computed for the prescribed
ranges of P and Q and given by: a4 ¼ ½1 1�, a3 ¼ ½20:46 20:46�,
a2 ¼ ½22:41 87:21�, a1 ¼ ½131:5 793�, a0 ¼ ½707:4 1763:7�,
b1 ¼ ½2:44 11:57� Accordingly, the stability regions of the above
eight polynomials at x3 = 0.05 are shown in Fig. 9. Stability con-
straints do not tolerate for x3 = [0.020.15], i.e. no intersection
occurs. A reasonable suggestion is to reduce the upper bound of
x3 gradually until a feasible solution ‘‘polygon’’ is obtained. A
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reduced range of x3 ¼ ½0:02 0:08� can result in a solution set as
shown in Fig. 10.
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Fig. 18. Rotor angle response for 3-phase short circuit at the infinite bus for 100 ms
with exact and perturbed PSSs.
Non-fragility analysis

To enhance non-fragility of a robust power system stabilizer
shown in Fig. 11, robust stability basin is searched for the point
ðxð0Þ1 ; xð0Þ2 ; xð0Þ3 Þ that allows for maximum perturbations in the con-
troller parameters (Dx1, Dx2, Dx3). Characterization of all robust
controllers is firstly developed where convex polygon shown in
Fig. 7 characterizes all robust stabilizing PSSs considering the full
range of the controller-pole time constant, i.e. x3 ¼ ½0:02 0:15�
using image-set polynomials, while the convex polygon shown in
Fig. 10 characterizes all stabilizing PSSs for x3 ¼ ½0:02 0:08� using
Kharitonov polynomials.

In this paper, the most non-fragile PSS is selected at the center
of the maximum-area inscribed rectangle that permits for maxi-
mum dependent variations in the parameters of the controller.
For fair comparison between image-set polynomials and Kharito-
nov polynomials, the study is carried out for the reduced range
of x3. It is clear from Fig. 12 that the stability region by Kharitonov
is a subset of that obtained by image-set polynomials, and there-
fore the maximum-area inscribed rectangle of the latter is larger
than that of the first. Hereafter, the maximum allowable ranges
for x1 and x2 while x3 ¼ ½0:02 0:08� are given by x1 ffi ½4 62�,
x2 ffi ½11 47� for image-set polynomials and given by
x1 ffi ½20 40�, x2 ffi ½27 35� for Kharitonov polynomials. The
most-resilient controller is considered at the center of the box of
controller parameters as follows:

Image-set polynomials: xð0Þ1 ¼ 33; xð0Þ2 ¼ 19; xð0Þ3 ¼ 0:05
Kharitonov polynomials: xð0Þ1 ¼ 30; xð0Þ2 ¼ 31; xð0Þ3 ¼ 0:05
These values permit for maximum allowable controller

perturbations.
Simulation results

Single-machine infinite-bus system

Open loop response
The roots of the open-loop system are calculated for 1024

points in the full range of P and Q. Fig. 13 illustrates the dominant
roots. Remarkably, the system achieves negative damping at cer-
tain operating points.
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Fig. 17. Rotor angle response for 0.1 pu increment in Tm with exact and perturbed
PSSs.
Robust stability of exact controller fxð0Þ1 ; xð0Þ2 ; xð0Þ3 g.
The most resilient controller is selected as x1 = 33, x2 = 19,

x3 = 0.05. The effectiveness of such controller, to guarantee robust
stability over the entire range of P and Q is depicted in Fig. 14.
The dominant roots of the characteristic polynomial dominant
roots for a fine grid covering the whole operating range are illus-
trated. Remarkably, the minimum damping ratio greater than 0.2
is achieved for the entire family of plants.

Robust stability of �30% perturbed controller
The gains of the exact controller are all reduced by 30%, i.e.

x1 ¼ 0:7xð0Þ1 ; x3 ¼ 0:7xð0Þ2 ; x3 ¼ 0:7xð0Þ3 . The effectiveness of the per-
turbed controller, to guarantee robust stability over the entire
range of P and Q, is depicted in Fig. 15 where a minimum damping
ratio of 0.2 is achieved.

Nonlinear model simulation
Using the nonlinear model of the SMIB system given in the

Appendix A, the resilient PSS is simulated at an operating point
given by P = 0.9 pu and Q = 0.4 pu. The controller’s output is satu-
rated at ±0.1 pu that cannot affect the profile of the terminal volt-
age dramatically. In this study, mechanical torque disturbance and
three-phase short circuit are considered. Firstly, the system
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Fig. 19. Feedback stabilizing signals under the three-phase short circuit distur-
bance with exact and perturbed PSSs.



Fig. 20. Two-area four-machine test system [2].
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response for 0.1 pu step increment in the mechanical torque with
full recovery after 100 ms is depicted in Fig. 16. Remarkably, the
proposed PSS can enhance system damping; further, the effect of
inclusion of the washout filter on the system response is nearly
non-significant. The resiliency of the proposed PSS is examined
by considering the rotor angle response for the same disturbance
with exact and perturbed controllers as shown in Fig. 17. Further-
more, the performance of the proposed resilient PSS, when the sys-
tem undergoes three-phase to ground fault at the infinite bus for
100 ms, is shown in Fig. 18. Noticeably, the design is non-fragile
even under large disturbances. The feedback stabilizing signals
under three-phase short circuit disturbance is shown in Fig. 19.

Multimachine simulation

Multimachine power system is a multi-input multi-output
(MIMO) system and hence it violates theoretically the basic
requirements of the proposed approach because it is not a SISO
system and it has many PSSs that have more than three terms. Con-
sequently, the proposed approach cannot be applied to multima-
chine systems directly. Firstly, a multimachine system is
decomposed into a set of single-machine subsystem using Theve-
nin’s theorem (the classical approach). Each subsystem comprises
one machine connected to hypothetical infinite bus through an
equivalent tie line. This decomposition enables us to consider the
uncertainties in P and Q of each machine separately. This approach
neglects the interaction between different control loops since the
design is accomplished for each machine separately.

In this study, two-area four-machine test power system [17]
shown in Fig. 20 is considered. This system is available as a
MATLAB/SIMULINK demo [18]. In addition, it is equipped with
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Fig. 21. System response due to 10% increment in the load of Area #2 with full
recovery after 9 s.
well-tuned power system stabilizers including the standard IEEE
PSS4B [19] and the conventional PSS [17]. This gives credit to the
comparison with the proposed PSS. The loads are represented by
constant impedances, and split between the two areas. Therefore,
the equivalent single-machine subsystems are roughly identical
due system symmetry. Consequently, the design is carried out once
for one equivalent subsystem whilst the resulting stabilizer is
added to the four machines. The equivalent tie-line reactance for
each machine is computed using Thevenin’s theorem. It is assumed
that the intervals of P and Q at each machine bus are given by
P ¼ ½0:4 1�, Q ¼ ½0:0 0:5�. The design approach presented in Sec-
tions ‘Robust PSS design and Non-fragility analysis’ is utilized to
compute the controller stability regions and then the most non-
fragile PSS are computed as before. The parameters of the most
resilient PSSs are computed roughly at the center of the maxi-
mum-area inscribed rectangle as xð0Þ1 ¼ 50; xð0Þ2 ¼ 30; xð0Þ3 ¼ 0:03.
The robustness and non-fragility of the proposed design are exam-
ined under small and large disturbances. Firstly, the system
response due to 10% increment in the load of Area 2 with full
recovery after nine seconds is shown in Fig. 21. The proposed
design outperforms the conventional PSS and the IEEE-PSS4B stabi-
lizer, and can extend the system stability limits. Secondly, the sys-
tem is tested for a three-phase to ground fault, at 80 km far from
Bus 8, and the response is depicted in Fig. 22. Noticeably, the stan-
dard IEEE-PSS4B stabilizer and the conventional design failed to
maintain system stability while the proposed design preserves
the system stability. Although the design is carried out for approx-
imated models derived using Thevenin’s theorem, the proposed
PSSs can damp out both local and inter-area modes of oscillation,
and tolerate with uncertainties in the plant and the controller
itself.
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Conclusion

This paper presents a step towards the design of robust resilient
PSSs for single machine infinite-bus systems. A three-term control-
ler is suggested to complete the study. A complete characterization
of all PSSs is presented using Routh–Hurwitz criterion to determine
necessary and sufficient stability constraints. Such constraints are
reformulated to generate the convex stability polygon. Convex
polygons are generated for different operating points that cover
the operating range and further the typical range of the controller
pole. The intersection of such polygons exactly describes the robust
stability polygon. To consider finite number of plants, Kharitonov
vertices are considered where the former approaches apply. Finally,
the most resilient controller is selected at center of the maximum
area-inscribed rectangle in the RS polygon to allow for maximum
perturbations in the controller parameters. Simulations results
based on SMIB and multimachine models are carried out to reveal
the effectiveness of the proposed approach.

Appendix A. The nonlinear model

_d ¼ xoðx� 1Þ
_x ¼ ðTm � ðE0qIq þ ðXq � X 0dÞIdIqÞÞ=M

_E0q ¼ �ðE
0
q þ ðXd � X 0dÞId � EfdÞ=T 0do

_Efd ¼ ðKEVref þ Upss � KEVT � EfdÞ=TE

ReId � ðXe þ XqÞIq þ V1 sin d ¼ 0
ReIq þ ðXe þ X 0dÞId þ E0q þ V1 cos d ¼ 0
Appendix B. Data of a single-machine infinite-bus system

Xd ¼ 1:6 pu;Xq ¼ 1:55 pu;X 0d ¼ 0:32 pu;T 0do ¼ 6 s;M ¼ 10 s;KE

¼ 25; TE ¼ 0:05 s; Emin
fd ¼ �5 pu;Emax

fd ¼ 5 pu;

xe ¼ 0:4 pu;V1 ¼ 1 pu;xo ¼ 2p� 50 rad=s:
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